Assessing Tracer Transport Algorithms and the Impact of Vertical Resolution in a Finite-Volume Dynamical Core

نویسندگان

  • JAMES KENT
  • CHRISTIANE JABLONOWSKI
  • JARED P. WHITEHEAD
  • RICHARD B. ROOD
چکیده

Modeling the transport of trace gases is an essential part of any atmospheric model. The tracer transport scheme in the Community Atmosphere Model finite-volume dynamical core (CAM-FV), which is part of the National Center for Atmospheric Research’s (NCAR’s) Community Earth System Model (CESM1), is investigated using multidimensional idealized advection tests. CAM-FV’s tracer transport algorithm makes use of one-dimensional monotonic limiters. The Colella–Sekora limiter, which is applied to increase accuracy where the data are smooth, is implemented into the CAM-FV framework, and compared with the more traditional monotonic limiter of the piecewise parabolic method (the default limiter). For 2D flow, CAM-FV splits dimensions, allowing overshoots and undershoots, with the Colella–Sekora limiter producing larger overshoots than the default limiter. The impact of vertical resolution is also explored. A vertical Lagrangian coordinate is used in CAM-FV, and is periodically remapped back to a fixed Eulerian grid. For purely vertical motion, it is found that lessfrequent remapping of the Lagrangian coordinate in CAM-FV improves results. For full 3D tests, the vertical component of the tracer transport dominates the error and limits the overall accuracy. If the vertical resolution is inadequate, increasing the horizontal resolution has almost no effect on accuracy. This is because the vertical resolution currently used in CAM version 5 may not be sufficiently fine enough to resolve some atmospheric tracers and provide accurate vertical advection. Idealized tests using tracers in a gravity wave agree with these results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Downscale cascades in tracer transport test cases: an intercomparison of the dynamical cores in the Community Atmosphere Model CAM5

The accurate modeling of cascades to unresolved scales is an important part of the tracer transport component of dynamical cores of weather and climate models. This paper aims to investigate the ability of the advection schemes in the National Center for Atmospheric Research’s Community Atmosphere Model version 5 (CAM5) to model this cascade. In order to quantify the effects of the different ad...

متن کامل

A multistep flux-corrected transport scheme

A multistep flux-corrected transport (MFCT) scheme is developed to achieve conservative and monotonic tracer transports for multistep dynamical cores. MFCT extends Zalesak twotime level scheme to any multistep time-differencing schemes by including multiple highorder fluxes in the antidiffusive flux, while computing the two-time level low-order monotone solution. The multistep time-differencing...

متن کامل

Viscous Models Comparison in Water Impact of Twin 2D Falling Wedges Simulation by Different Numerical Solvers

In this paper, symmetric water entry of twin wedges is investigated for deadrise angle of 30 degree. Three numerical simulation of a symmetric impact, considering rigid body dynamic equations of motion in two-phase flow is presented. The two-phase flow around the wedges is solved by Finite Element based on Finite Volume method (FEM-FVM) which is used in conjunction with Volume of Fluid (VOF) sc...

متن کامل

روش مسیر یابی ذره به منظور پیش بینی حرکت نفت در دریا

A two-dimensional two-phase numerical model is developed to predict transport and fate of oil slicks which resulted the concentration distribution of oil on the water surface. Two dimensional governing equation of fluid flow which consists mass and momentum conservation was solved using the finite difference method on the structured staggered grid system. The resulted algebric equations were so...

متن کامل

A ‘‘Vertically Lagrangian’’ Finite-Volume Dynamical Core for Global Models

A finite-volume dynamical core with a terrain-following Lagrangian control-volume discretization is described. The vertically Lagrangian discretization reduces the dimensionality of the physical problem from three to two with the resulting dynamical system closely resembling that of the shallow water system. The 2D horizontalto-Lagrangian-surface transport and dynamical processes are then discr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012